Kernel Density Estimation
Kernel Density Estimation, KDE
# Import numpy to generate a sample
import numpy as np
# Generate a sample of two gaussian distributions
X = np.concatenate((np.random.normal(0, 1, 80),
np.random.normal(8, 1, 20)))[:, np.newaxis]
# Lets visualize its histogram
_=plt.hist(X, density=True)

Last updated
Was this helpful?